Krististudio.ru

Онлайн образование
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Языки программирования для машинного обучения

10 лучших языков программирования для машинного обучения

В январе 2019 года сервис для хостинга ИТ-проектов и их совместного развития GitHub опубликовал рейтинг самых популярных языков программирования, используемых для машинного обучения (МО). Список составлен на основе количества репозиториев, авторы которых указывают, что в их приложениях используются МО-алгоритмы.

Самым популярным языком программирования среди разработчиков МО-программ в GitHub назвали Python во многом за набор предварительно настроенных инструментов для внедрения МО-моделей и алгоритмов. Благодаря этому программисты могут задействовать Python для реализации машинного обучения без глубоких познаний в нем и создания, например, чат-ботов с нуля.

Это стало возможным после появления отлично документированной библиотеки Scikit-Learn, в которой предусмотрено большое количество алгоритмов машинного обучения. Также отмечается присутствие библиотеки ChatterBot, предназначенной для обработки речи и обучения на наборах данных в формате диалогов.

C++ занял второе место среди языков программирования, применяемых пользователями GitHub для машинного обучения. Высокая позиция обусловлена созданием МО-библиотеки Google TensorFlow , в которой акцент сделан на нейросетях . Хотя основная часть разработчиков и исследователей, которые используют TensorFlow, работают в Python, иногда бывает необходимо отказаться от этой схемы. Например, когда необходимо использовать обученную модель в мобильном приложении или роботе .

Кроме того, популярность C++ на GitHub обусловлена развитием распределенной высокопроизводительной платформы для градиентного бустинга Microsoft LightGBM (повышает скорость и эффективность обучения МО-модели) и библиотеки Turi Create (упрощает разработку пользовательских моделей машинного обучения для начинающих разработчиков).

Тройку лидеров в рейтинге GitHub замкнул JavaScript. У него есть WYSIWYG-редактор, который позволяет создавать модели машинного обучения путем простого перетаскивания объектов. Кроме того, на пользу JavaScript в рейтинге сыграл проект ml5.js, призванный сделать машинное обучение пригодным для использования художниками и студентами нетехнических специальностей, предлагая доступ к алгоритмам и моделям машинного обучения в браузере.

На Java создан такой популярный проект, как Smile (Statistical Machine Intelligence and Learning Engine). Это быстрая комплексная система, предназначенная для реализации машинного обучения, НЛП, линейной алгебры, графа, интерполяции и визуализации в Java и Scala.

Еще одним популярным репозиторием на GitHub, в котором код написан на Java, является H20. Эта библиотека машинного обучения предназначена как для локальных вычислений, так и с использованием кластеров, создаваемых непосредственно средствами H2O или же работая на кластере Spark и Hadoop .

Одним из самых популярных МО-проектов, написанных на C#, на GitHub является ML Agents. Этот открытый плагин для игрового движка Unity, который позволяет играм и моделированным пространствам выступать в качестве сред для обучения интеллектуальных агентов.

Здесь наиболее популярными проектами являются MachineLearning.jl, MLKernels.jl и LightML.jl.

У этого языка программирования стоит отметить скрипты Dl-machine, предназначенные для настройки графического процессора для вычислений с использованием CUDA с библиотеками для глубокого обучения.

Язык программирования R популярен в МО-проектах благодаря большому сообществу и библиотек для анализа данных.

TypeScript — это надмножество JavaScript, то есть, любой код на JS является правильным с точки зрения TypeScript. Однако TypeScript обладает некоторыми дополнительными возможностями, которые не входят в JavaScript

В GitHub есть несколько репозиториев, способствующих популяризации Scala. Среди них — Microsoft Machine Learning for Apache Spark. [1]

Топ-5 языков для машинного обучения

Существует великое множество языков программирования, однако не все они подходят для машинного обучения (МО). Портал Techopedia рассказывает о наиболее подходящих языках, их преимуществах и недостатках.

Специалист по вычислительной техники Стэнфордского университета Эндрю Нгом дал МО следующее определение: «наука, которая работает над тем, как научить компьютеры функционировать без явного программирования». Предпосылки к рождению науки появились в 1950-х, однако вплоть до начало 2000-х они носили лишь теоретический характер. Настоящий прорыв произошел десятилетие назад, когда МО стало катализатором развития нескольких прорывных технологий, особенно это касается искусственного интеллекта. МО можно разбить на несколько категорий, включая контролируемое (supervised), неконтролируемое (unsupervised), полууправляемое (semi-supervised ) и обучение с подкреплением (reinforcement learning).

В то время, как контролируемое обучение для выведения взаимосвязи с выходными результатами опирается на маркированные (помеченные) входные данные, неконтролируемое МО предназначено для обнаружения закономерностей среди немаркированных входных данных. В полууправляемом (или МО с частичным привлечением учителя) применяется комбинация контролируемого и неконтролируемого обучения, тогда как обучение с подкреплением направлено на то, чтобы программы могли повторять заданную последовательность циклов или разрабатывать процессы с желаемыми результатами, избегая при этом ошибок.

МО в современной итерации востребовано во многих отраслях промышленности, растет также спрос на продукты и услуги, основой которых являются машинные алгоритмы. Предприятия применяют прогностические возможности МО, стремясь разработать предписывающие (prescriptive) методы для принятия обоснованных решений. Технология предусматривает несколько методов разработки ПО на базе машинных алгоритмов, однако самым популярным из них является задействование языков программирования.

Python. Это высокоуровневый язык программирования, который имеет множество различных способов применений, включая науку о данных и внутреннюю веб-разработку. Он был создан Python Foundation в начале 1990-х и является мощным инструментом для анализа данных, широко используется в технологии больших данных. Особый статус ему придает многочисленное сообщество разработчиков МО, которое в основном сосредоточено на быстрорастущем ИИ-направлении.

Благодаря активному сообществу для Python появилось множество готовых библиотек МО. Этот язык — платформенно независимый, поэтому его можно адаптировать практически к любой операционной системе. Еще одно преимущество Python связано с его открытостью — он построен на базе технологий Open Source, поэтому разработчики могут получить доступ к любому стеку языка.

Что касается минусов Python, то поскольку это динамически типизированный язык, работа с ним в среде МО может вызывать проблемы. Одной из них является сложность отслеживания ошибок в коде, что связано с разрастанием кодовой базы программы и, соответственно, с ее сложностью. В некоторых случаях (сложные проекты для крупных организаций) аудит кода может выливаться в значительные финансовые затраты, отнимать много времени и сказываться на продуктивности проекта.

Читать еще:  Обучение программированию html

R. Этот язык программирования появился в начале 1990-х и является частью проекта GNU. Он широко применяется в анализе данных и, как правило, является целевым для решения общих задач МО, таких как регрессия, классификация и формирование дерева решений. R помимо прочего пользуется популярностью среди статистиков. Как и Python, R обладает открытым исходным кодом и широко известен как язык, пакеты для работы с которым относительно легко установить, настроить и применять.

R — платформенно независимый, он хорошо интегрируется с другими языками программирования. Наряду с анализом данных, R приспособлен для визуализации данных.

Несмотря на относительную простоту интеграции с другими инструментами, R обладает рядом особенностей, которые усложняют его изучение. К ним, например, можно отнести нетрадиционные структуры данных и индексирование (которое начинается с 1 вместо 0).

R менее популярен, чем Python, поэтому массив документации, требуемый разработчикам для создания приложений в области МО, у него меньше.

JavaScript. Этот язык появился в середине 1990-х как инструмент для улучшения практики веб-разработки и является одним из наиболее востребованных в этой области. JavaScript — высокоуровневый и динамически типизированный язык, гибкий и мультипарадигмальный. Применение языка в МО получило ограниченное применение, но, тем не менее, такие известные проекты, как Google Tensorflow.js, основаны на JavaScript.

Что касается плюсов JavaScript в области МО, то он открывает возможности проще вступить на неизведанную тропу для веб-разработчиков и разработчиков приложений, которые в значительной степени уже хорошо с ним знакомы. Однако нынешняя JavaScript-экосистема для МО все еще выглядит незрелой, поэтому поддержка этого типа разработки в настоящее время ограничена. Помимо этого ей недостает функций для работы с данными, которые в таких языках, как R и Python, присутствуют по умолчанию.

C++. Это самый старый среди наиболее распространенных на сегодняшний день языков программирования. Он был создан в недрах Bell Labs в начале 1980-х как научно-исследовательский проект, направленный на расширение возможностей языка Си. Обладая возможностями одновременно как низкоуровневого, так и высокоуровневого языка программирования, в контексте МО C++ обеспечивает более высокий уровень контроля и эффективности, чем другие языки программирования.

Гибкость языка хорошо подходит для ресурсоемких приложений, и подмножество программ МО здесь — не исключение. Учитывая, что C++ — статически типизированный язык, он может выполнять задачи с относительно высокой скоростью.

Что касается его минусов, то основным из них является то, что для создания новых приложений на базе C++ требуется написание большого объема сложного кода, что занимает много времени и может вызвать большие трудности в обслуживании. Язык C++ определенно сложен в овладении и, создавая на нем новые проекты, начинающие программисты очень часто допускают невынужденные ошибки.

Java. За созданием Java стоит Sun Microsystems. Появившийся в середине 1990-х, он изначально замышлялся как высокоуровневый и объектно-ориентированный язык программирования, который во многом напоминает по структуре C++. Обладая огромной популярностью, Java может похвастаться широким спектром алгоритмов, которые очень полезны для сообщества разработчиков софта МО. Во многом Java считается одним из самых безопасных языков программирования благодаря использованию байт-кода и песочниц.

Его можно обозначить как удачную инкарнацию C++ (Java обладает большинством функционала, заложенным в C++), которая лишена недостатков последнего — проблем с безопасностью кодовой базы и сложностью компиляции.

Несмотря на все свои преимущества, Java имеет репутацию более медленного языка, чем многие другие языки программирования и в том числе C++. Кроме того, начиная с 2019 г. для написания определенных бизнес-приложений на Java требуется коммерческое лицензирование, что выльется в дополнительные расходы для предприятий.

Выводы

Python — самый популярный из всех языков программирования, применяемых в МО. Тем не менее, сбрасывать со счетов JavaScript и ряд некоторых других языков, может быть непредусмотрительно. Это связано с тем, что со временем их популярность будет расти, отражая изменения бизнес-ландшафта. Что касается тенденций программирования, то можно с уверенностью сказать, что в ближайшие несколько лет написание кода останется востребованной функцией, однако оно станет менее ориентированным на код и больше на функционал, поскольку машины сами научатся писать код.

Профессия Data Scientist: машинное обучение

Вы научитесь создавать аналитические системы и использовать алгоритмы машинного обучения, освоите работу с нейросетями. Наполните портфолио и получите престижную профессию.

Записаться на курс

  • Длительность 13 месяцев
  • Помощь в трудоустройстве
  • 7 курсов в одной программе
  • Доступ к курсу навсегда

На рынке не хватает специалистов по Data Science

  • 2 300 компаний сейчас ищут специалистов в Data Science & Machine Learning
  • 80 000 рублей зарплата начинающего специалиста

Данные сайта hh.ru

Кому подойдёт этот курс

Новичкам в IT

Вы получите базовые навыки по аналитике, статистике и математике, которые откроют путь к карьере в Data Science и Machine Learning.

Программистам

Вы прокачаете свои знания и навыки в программировании на Python. Научитесь использовать алгоритмы машинного обучения, решать бизнес-задачи — и усилите портфолио мощными проектами.

Менеджерам и владельцам бизнеса

Научитесь использовать данные для построения прогнозов и оптимизации бизнес-процессов и переведёте компанию на новый уровень.

Чему вы научитесь

Программировать на Python

Визуализировать данные

Работать с библиотеками и базами данных

Применять нейронные сети для решения реальных задач

Строить модели машинного обучения

Писать рекомендательные системы

От первого урока к работе мечты

Студенты и выпускники Skillbox получают индивидуальную поддержку от Центра карьеры на протяжении всего обучения — от помощи с выбором профессии до выхода на работу мечты. Вот как это происходит.

С каждым уроком ваш профессиональный уровень растёт и вы можете планировать карьеру уже во время обучения.

Реакция потенциального работодателя зависит от того, как вы подаёте себя в резюме. Мы дадим советы по его составлению и поможем написать резюме, подающее вас лучшим образом.

Выбираете лучшую вакансию

Мы экономим ваше время — подбираем подходящие вакансии и договариваемся об интервью с работодателем. Вам нужно только пройти собеседование.

Начинаете карьеру мечты

Читать еще:  Обучение программированию москва

Вы успешно проходите собеседование, выходите на работу и сразу начинаете выполнять задачи.

Записаться на курс или получить бесплатную консультацию

Похоже произошла ошибка. Попробуйте отправить снова или перезагрузите страницу.

Ваша заявка успешно отправлена

Как проходит обучение

Изучаете тему

В курсе — практические видеоуроки.

Выполняете задания

В том темпе, в котором вам удобно.

Работаете с наставником

Закрепляете знания и исправляете ошибки.

Защищаете дипломную работу

И дополняете ею своё портфолио.

Программа

Вас ждут 7 курсов с разным уровнем сложности, знание которых можно приравнять к году работы.

  1. Аналитика. Начальный уровень
  1. Введение.
  2. Основы Python: базовые структуры данных.
  3. Основы Python: циклы и условия.
  4. Основы Python: функции.
  5. Основы Python: классы и объекты.
  6. Основы Python: исключения.
  7. Библиотека NumPy. Часть 1.
  8. Библиотека NumPy. Часть 2.
  9. Библиотека pandas. Часть 1.
  10. Библиотека pandas. Часть 2.
  11. Визуализация данных с помощью matplotlib.
  12. Чтение и запись данных.
  13. Введение в SQL.
  14. Работа со строками.
  1. Основы статистики и теории вероятностей.
  1. Основные концепции Machine Learning (ML).
  2. Жизненный цикл ML-проекта.
  3. Регрессия.
  4. Классификация.
  5. Кластеризация
  6. Дополнительные техники.
  7. Знакомство с Kaggle.
  1. Базовые математические объекты и SymPy. Дроби и преобразования.
  2. Базовые математические объекты и SymPy. Необходимые функции и некоторые дополнительные объекты.
  3. Функции одной переменной, их свойства и графики.
  4. Интерполяция и полиномы.
  5. Аппроксимация и преобразования функций.
  6. Функции нескольких переменных, их свойства и графики.
  7. Линейные функции.
  8. Матрицы и координаты.
  9. Линейные уравнения.
  10. Производная функции одной переменной.
  11. Производная по направлению и градиент + частные производные.
  12. Линейная регрессия.
  13. Собственные векторы и значения. Определитель.
  14. Разложения матриц.
  1. Введение в нейронные сети.
  2. Обучение нейронных сетей.
  3. Нейронные сети на практике.
  4. Свёрточные нейросети для задачи классификации изображений.
  5. Семантическая сегментация. Часть 1. Слабая локализация и полносвёрточные нейросети (FCN).
  6. Семантическая сегментация. Часть 2. Продвинутые архитектуры FCN для семантической сегментации.
  7. Детектирование объектов.
  8. От дискриминативных моделей к генеративным. Style transfer.
  9. Генеративные состязательные сети.
  10. Введение в NLP.
  11. NLP на нейросетях. Рекуррентные нейросети, классификация текстов.
  12. NLP на нейросетях. Языковые модели, Attention, Transformer.
  13. Обучение с подкреплением. Q-Learning.
  14. Обучение с подкреплением. Deep Q-Learning.
  15. Ускорение и оптимизация нейронных сетей.
  16. Внедрение в DL моделей в Production.
  17. Рекомендательные системы.
  18. Вывод моделей машинного обучения в production, post production и мониторинг.
  1. Как стать первоклассным программистом.
  2. Как искать заказы на разработку.
  3. Личный бренд разработчика.
  4. Photoshop для программиста.
  5. Вёрстка email-рассылок. Советы на реальных примерах.
  6. The state of soft skills.
  7. Как мы создавали карту развития для разработчиков.
  8. Как общаться по email и эффективно работать с почтой.
  9. Повышение своей эффективности.
  10. Спор о первом языке программирования.
  11. Саморазвитие: как я не усидел на двух стульях и нашёл третий.
  12. Data-driven подход к продуктивности — инсайты из данных миллиона людей.
  1. IT Resume and CV.
  2. Job interview: questions and answers.
  3. Teamwork.
  4. Workplace communication.
  5. Business letter.
  6. Software development.
  7. System concept development and SRS.
  8. Design.
  9. Development and Testing.
  10. Deployment and Maintenance.

Уже учились на каком-то курсе из программы?

Скажите об этом менеджеру — за этот курс платить не придётся!

Получить презентацию программы и консультацию специалиста

Похоже произошла ошибка. Попробуйте отправить снова или перезагрузите страницу.

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

Языки программирования для искусственного интеллекта

Рейтинг языков программирования для ИИ и машинного обучения

Искусственный интеллект (ИИ) – это широкое и растущее технологическое поле, и это означает, что ИИ может быть реализован на разных языках программирования. Однако по-прежнему трудно определить, какой из многих языков следует использовать для разработки ИИ. Поэтому в данном материале мы приведем некоторые из лучших языков программирования ИИ, которые помогут вам реализовать его.

Julia

Julia – это высокоуровневый язык программирования общего назначения, разработанный Джеффом Безансоном, Стефаном Карпински, Вирал Б. Шахом и Аланом Эдельманом в 2009 году. Он разработан с нацеленностью на высокопроизводительный численный анализ и вычислительную науку, поэтому он не включает необходимость отдельной компиляции по скорости. Простой синтаксис и глубокие математические корни делают Julia дружественным языком программирования для аналитиков данных. Он также включает Flux, основу для машинного обучения и ИИ. В сочетании с математическим синтаксисом Julia предлагает идеальный способ выражения алгоритмов. Julia также поддерживает другие платформы машинного обучения, такие как TensorFlow и MXNet.

Haskell

Haskell – стандартизированный, универсальный язык программирования, разработанный с нестрогой семантикой и сильной статической типизацией. Первоначально разработанный в 1990 году, Haskell в основном используется в академических кругах, хотя есть и некоторые примеры его использования в промышленности и коммерции для проектов в AT&T, Facebook, Google и других. Haskell основан на семантике языка программирования Miranda и позволяет эффективным библиотекам реализовывать алгоритмы ИИ.

В отличие от других, R – уникальный язык программирования, а также бесплатная программная среда с открытым исходным кодом для статистических вычислений и графики. Разработанный в 1993 году Росом Ихакой и Робертом Джентльменом, R широко используется среди аналитиков данных для разработки статистического программного обеспечения и анализа данных. Он также используется в искусственном интеллекте нового стиля и общем машинном обучении. R предоставляет несколько парадигм программирования, таких как векторное вычисление, функциональное программирование и объектно-ориентированное программирование и рассматривается как один из основных стандартных языков для таких областей, как финансы, биология и медицина.

C++ был разработан с учетом производительности, эффективности и гибкости, что делает его идеальным выбором для многих проектов программирования ИИ, которым необходима скорость. По сравнению с другими языками программирования, C++ имеет более быстрое выполнение и более низкую задержку, что делает его полезным для поиска решений сложных проблем ИИ. Он также позволяет широко использовать алгоритмы и является эффективным средством написания статистических методов ИИ, таких как нейронные сети.

MATLAB

MATLAB (Matrix Laboratory) является патентованным языком программирования, разработанным MathWorks. Он широко используется многими разработчиками программного обеспечения и разработчиками для анализа краевых систем и проектов ИИ. Это простой в использовании язык со встроенной графикой, которая позволяет разработчикам визуализировать данные и получать от них значимую информацию. MATLAB – хороший выбор для машинного обучения и проектов ИИ при задачах визуализации и выполнения матриц.

Читать еще:  Программы обучающие программированию

Python

Python – широко применяемый язык программирования и может быть использован для реализации ИИ из-за простой и бесшовной структуры, которую он предлагает. Синтаксис Python позволяет легко реализовать различные алгоритмы ИИ, что также позволяет сократить время разработки по сравнению с другими доступными языками программирования. Применение Python позволяет пользователям создавать нейронные сети с набором полезных библиотек, которые могут использоваться для разработки ИИ. Другие функции включают возможность тестирования алгоритмов без необходимости их реализации. Он также поддерживает объектно-ориентированные, функциональные и процедурно-ориентированные стили программирования.

Lisp является одним из самых старых доступных языков программирования, но все же остается одним из предпочтительных вариантов разработки ИИ из-за его уникальных функций. Это, по сути, практическая математическая нотация для компьютерных программ. Разработчики склонны идти на Lisp в машинном обучении его гибкости приспосабливаться к проблеме, которая нуждается в решении. Помимо этого, Lisp также предлагает быстрые возможности прототипирования, библиотеку типов коллекций, поддержку символических выражений и другое.

Java, чрезвычайно популярный язык программирования, также может рассматриваться как хороший выбор для программирования ИИ, поскольку он обеспечивает алгоритмы поиска и нейронные сети. Это простой для понимания язык, который предлагает графическое представление, отладку и масштабируемость. Его портативность делает его предпочтительной реализацией для различных приложений на основе наличия различных встроенных типов.

R или Python для машинного обучения

Каждый эксперт по аналитическим данным задает себе вопрос, какой язык программирования выбрать R или Python, — пишут TI? Для поиска лучшего ответа на этот вопрос в большинстве случаев используется наиболее популярный поисковик Google. Не находя подходящих ответов, потенциальные кандидаты так и не становятся экспертами по технологиям машинного обучения или по аналитическим данным. В данной статье предпринята попытка объяснить специфику языков R и Python для их использования в разработке технологий машинного обучения.

Машинное обучение и наука о данных являются процветающими и постоянно растущими сегментами современных продвинутых технологий, позволяющими решать различные сложные проблемы и задачи в сфере разработок решений и приложений. В этой связи в глобальном масштабе перед аналитиками и экспертами аналитических данных открываются самые широкие возможности применения своих сил и способностей в таких технологиях как искусственный интеллект, IoT и большие данные. Для решения новых сложных задач экспертам и специалистам требуется мощный инструмент обработки огромного массива данных, и для автоматизации задач по анализу, распознаванию и агрегации данных были разработаны разнообразные инструменты и библиотеки машинного обучения.

В развитии библиотек машинного обучения лидерские позиции занимают такие языки программирования как R и Python. Многие эксперты и аналитики тратят время на выбор необходимого языка. Какой же язык программирования более предпочтителен для целей машинного обучения?

В чем сходство R и Python

  • Оба языка R и Python являются языками программирования с открытым исходным кодом. Огромное число членов сообщества программистов внесло вклад в разработку документации и в развитие данных языков.
  • Языки могут быть использованы для анализа данных, аналитики и в проектах машинного обучения.
  • Оба имеют продвинутые инструменты для выполнения проектов в сфере науки о данных.
  • Оплата труда экспертов по аналитическим данным, предпочитающих работать в R и Python, практически одинакова.
  • Текущие версии Python и R x.x

R и Python – борьба конкурентов

Исторический экскурс:

  • В 1991 году Guido Van Rossum, вдохновленный разработками языков C, Modula-3 и ABC, предложил новый язык программирования — Python.
  • В 1995 году Ross Ihaka и Robert Gentleman создали язык R, который разрабатывался по аналогии с языком программирования S.
  • Цель разработки Python – создание программных продуктов, упрощение процесса разработки и обеспечение читаемости кода.
  • Тогда как язык R разрабатывался в основном для проведения дружественного к пользователю анализа данных и для решения сложных статистических задач. Это язык, главным образом, статистической ориентированности.

Легкость обучения:

  • Благодаря читаемости кода, языку Python легко научиться. Это дружественный для начинающих программистов язык, которому можно научиться, не имея предыдущего опыта в программировании.
  • Язык R труден, но, чем дольше использовать этот язык в программировании, тем легче идет обучение и тем выше его результативность в решении сложных статистических формул. Для опытных программистов язык R – это опция go to.

Сообщества:

  • Python имеет поддержку различных сообществ, члены которых занимаются развитием языка для перспективных приложений. Программисты и разработчики являются, подобно членам StackOverflow, активными участниками сообщества Рython.
  • Язык R также поддерживается членами разнообразных сообществ через листы рассылки, документацию о вкладе пользователей и др. Большинство статистиков, исследователей и экспертов по аналитическим данным принимают активное участие в развитии языка.

Гибкость:

  • Python – это язык, акцентирующий внимание на продуктивности, поэтому он достаточно гибок при разработке различных приложений. Для разработки крупномасштабных приложений Python содержит разные модули и библиотеки.
  • Язык R также гибок в разработке сложных формул, при проведении статистических тестов, визуализации данных и др. Включает разнообразные и готовые к использованию пакеты.

Применение:

  • Python является лидером в разработке приложений. Он используется для поддержки при развитии сайтов и разработке игр, в науке о данных.
  • Язык R, главным образом, используется при разработке проектов в области анализа данных, которые сфокусированы на статистике и визуализации.

Оба языка – R и Python – имеют преимущества и недостатки. В большинстве случаев, это специфично-центричные языки, поскольку R сфокусирован на статистике и визуализации, а Рython – на простоте в разработке любого приложения.

Исходя из этого, R может быть использован в основном для исследований в научных институтах, при проведении статистических анализов и визуализации данных. С другой стороны, Python используется для упрощения процесса совершенствования программ, обработке данных и т. д. Язык R может быть очень результативным для статистиков, работающих в сфере анализа данных, а Python лучше подходит для программистов и разработчиков, создающих продукты для экспертов по анализу данных.

Ссылка на основную публикацию
Adblock
detector