Krististudio.ru

Онлайн образование
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тригонометрические неравенства онлайн калькулятор

Онлайн решение задач, уравнений, неравенств…

Онлайн решение задач, решение уравнений онлайн,
решение неравенств онлайн, решение интегралов онлайн,
решение логарифмов онлайн, решение пределов онлайн,
нахождение производных онлайн, исследование функции онлайн.

Краткий список обозначений и операторов WolframAlpha
для решения задач онлайн

Примеры решения задач онлайн с помощью WolframAlpha

1. Решение рациональных, дробно-рациональных уравнений любой степени, показательных, логарифмических, тригонометрических уравнений.
Пример 1. Чтобы решить уравнение x 2 + 3x – 4 = 0, нужно ввести solve x^2+3x-4=0
Пример 2. Чтобы решить уравнение log32x = 2, нужно ввести solve log(3, 2x)=2
Пример 3. Чтобы решить уравнение 25 x-1 = 0.2, нужно ввести solve 25^(x-1)=0.2
Пример 4. Чтобы решить уравнение sin x = 0.5, нужно ввести solve sin(x)=0.5

2. Решение систем уравнений.
Пример. Чтобы решить систему уравнений

нужно ввести solve x+y=5 && x-y=1
Знаки && в данном случае обозначает логическое “И”.

3. Решение рациональных неравенств любой степени.
Пример. Чтобы решить неравенство x 2 + 3x – 4 2 + 3x – 4 2 – x + 8 > 0,

нужно ввести solve x^2+3x-4 0
Знаки && в данном случае обозначает логическое “И”.

5. Раскрытие скобок + приведение подобных в выражении.
Пример. Чтобы раскрыть скобки в выражении (c+d) 2 (a-c) и привести подобные, нужно
ввести expand (c+d)^2*(a-c).

6. Разложение выражения на множители.
Пример. Чтобы разложить на множители выражение x 2 + 3x – 4, нужно ввести factor x^2 + 3x – 4.

7. Вычисление суммы n первых членов последовательности (в том числе арифметической и геометрической прогрессий).
Пример. Чтобы вычислить сумму 20 первых членов последовательности, заданной формулой an =n 3 +n, нужно ввести sum n^3+n, n=1..20
Если нужно вычислить сумму первых 10 членов арифметической прогрессии, у которой первый член a1 = 3, разность d = 5, то можно, как вариант, ввести a1=3, d=5, sum a1 + d(n-1), n=1..10
Если нужно вычислить сумму первых 7 членов геометрической прогрессии, у которой первый членb1 = 3, разность q = 5, то можно, как вариант, ввести b1=3, q=5, sum b1*q^(n-1), n=1..7

8. Нахождение производной.
Пример. Чтобы найти производную функции f(x) =x 2 + 3x – 4, нужно ввести derivative x^2 + 3x – 4

9. Нахождение неопределенного интеграла.
Пример. Чтобы найти первообразную функции f(x) =x 2 + 3x – 4, нужно ввести integrate x^2 + 3x – 4

10. Вычисление определенного интеграла.
Пример. Чтобы вычислить интеграл функции f(x) =x 2 + 3x – 4 на отрезке [5, 7],
нужно ввести integrate x^2 + 3x – 4, x=5..7

Читать еще:  Мультик про шахматы смотреть онлайн

11. Вычисление пределов.
Пример. Чтобы убедиться, что

введите lim (x -> 0) (sin x)/x и посмотрите ответ. Если нужно вычислить какой-то предел при x, стремящемся к бесконечности, следует вводить x -> inf.

12. Исследование функции и построение графика.
Пример. Чтобы исследовать функцию x 3 – 3x 2 и построить ее график, просто введите x^3-3x^2. Вы получите корни (точки пересечения с осью ОХ), производную, график, неопределенный интеграл, экстремумы.

13. Нахождение наибольшего и наименьшего значений функции на отрезке.
Пример. Чтобы найти минимальное значение функции x 3 – 3x 2 на отрезке [0.5, 2],
нужно ввести minimize (x^3-x^2),
Чтобы найти максимальное значение функции x 3 – 3x 2 на отрезке [0.5, 2],
нужно ввести maximize (x^3-x^2),

Тригонометрические уравнения

Тригонометрическое уравнение – уравнение, содержащее переменную (x) в аргументе одной или нескольких тригонометрических функций: синус, косинус, тангенс, котангенс.

(bullet) Стандартные тригонометрические уравнения:
[begin hline text <Уравнение>& text <Ограничения>& text<Решение>\ hline &&\ sin x=a & -1leq aleq 1 & left[ begin begin &x=arcsin a+2pi n\ &x=pi -arcsin a+2pi m end end right. , n,min mathbb\&&\ hline &&\ cos x=a & -1leq aleq 1 & x=pm arccos a+2pi n, nin mathbb\&&\ hline &&\ mathrm, x=a & ain mathbb & x=mathrm, a+pi n, nin mathbb\&&\ hline &&\ mathrm,x=a & ain mathbb & x=mathrm, a+pi n, nin mathbb\&&\ hline end]

(bullet) Таблица синусов, косинусов, тангенсов и котангенсов:
[ <|c|c|c|c|c|c|>hline &&&&&\[-17pt] & quad 0 quad (0^ circ)& quad dfrac6 quad (30^circ) & quad dfrac4 quad (45^circ) & quad dfrac3 quad (60^circ)& quad dfrac2 quad (90^circ) \ &&&&&\[-17pt] hline sin & 0 &frac12&frac2&frac2&1\[4pt] hline cos &1&frac2&frac2&frac12&0\[4pt] hline mathrm &0 &frac3&1&sqrt3&infty\[4pt] hline mathrm &infty &sqrt3&1&frac3&0\[4pt] hline end>>]

(bullet) Основные формулы приведения:

[begin &sin left(dfrac2pm xright)=cos x\[2pt] &sin (pipm x)=mp sin x\[2pt] &cos left(dfrac2 pm xright)=pm sin x\[2pt] &cos(pi pm x)=-cos x end]

Формулы приведения для тангенса и котангенса легко вывести, зная, что [mathrm,x=dfrac quad text <и>quad mathrm,x= dfrac]

(bullet) Четность косинуса и нечетность синуса, тангенса и котангенса:

Решите уравнение [sin alpha=1]

Читать еще:  Математика онлайн обучение

В ответе укажите наименьший положительный корень уравнения, деленный на (pi) .

Данное уравнение равносильно серии корней [alpha=dfrac2+2pi n,qquad ninmathbb.] Найдем положительные корни уравнения, решив неравенство: [dfrac2+2pi n>0quadLeftrightarrowquad n>-dfrac14 quadRightarrow] наименьшее подходящее целое (n) — это (n=0) , при котором получается (alpha=dfrac2) .
Следовательно, в ответ пойдет [dfrac2divpi=dfrac12=0,5.]

Решите уравнение [sin y=0]

В ответе укажите целый корень уравнения.

Данное уравнение равносильно серии корней [y=pi n, qquad ninmathbb.] Заметим, что единственный целый корень из этой серии получается при (n=0) и это (y=0) (все остальные корни будут вида целое число умножить на (pi) , что является иррациональным числом).

Решите уравнение [mathrm, pi x=0]

В ответе укажите наименьший положительный корень.

Данное уравнение равносильно [pi x=dfrac2+pi nquadLeftrightarrowquad x=dfrac12+n, quad ninmathbb.] Найдем положительный корень, решив неравенство [dfrac12+n>0quadLeftrightarrowquad n>-dfrac12quadRightarrow] наименьшее (n=0) , откуда (x=dfrac12) .

Решите уравнение [mathrm, dfrac x6=sqrt3]

В ответе укажите наименьший корень, принадлежащий отрезку ([0;2pi]) , деленный на (pi) .

Данное уравнение равносильно [dfrac x6=dfrac3+pi nquadLeftrightarrowquad x=2pi+6pi n, qquad ninmathbb.] Корни, принадлежащие отрезку ([0;2pi]) , найдем, решив неравенство: [0leqslant 2pi+6pi nleqslant 2piquadLeftrightarrowquad -dfrac13leqslant nleqslant 0] Целое (n) , принадлежащее отрезку (left[-frac13;0right]) , это (n=0) . Следовательно, корень (x=2pi) . Следовательно, в ответ пойдет (2) .

Решите уравнение [sin x=dfrac2]

В ответе укажите наименьший положительный корень, принадлежащий первой четверти, деленный на (pi) .

Данное уравнение равносильно [x_1=dfrac4+2pi nquad >> quad x_2=dfrac<3pi>4+2pi m,quad n,minmathbb.]

Видим, что в первой четверти лежит только серия (x_1=dfrac4+2pi n) . Найдем наименьший положительный корень, решив неравенство: [dfrac4+2pi n>0 quadLeftrightarrowquad n>-dfrac18 quadRightarrow] наименьшее целое (n=0) , при котором получаем корень (x=dfrac4) . Следовательно, в ответ запишем (dfrac4div pi=dfrac14=0,25.)

Найдите корень уравнения [sin <9>xbiggr)> = dfrac<1><2>.] Если уравнение имеет более одного корня, в ответе укажите меньший из его положительных корней.

ОДЗ: (x) – произвольное. Решим на ОДЗ:

Решение уравнения (sin x = a) имеет вид: (x_1 = mathrm, a + 2pi n, x_2 = pi — mathrm, a + 2pi n, n in mathbb) , откуда для исходного уравнения получаем [dfrac <9>x_1 = dfrac <6>+ 2pi n, n in mathbb, qquad dfrac <9>x_2 = pi — dfrac <6>+ 2pi n, n in mathbb,] что равносильно (x_1 = 1,5 + 18n, n in mathbb) , (x_2 = 7,5 + 18n, n in mathbb) – подходят по ОДЗ. Среди корней наименьший положительный (x = 1,5) .

Читать еще:  Онлайн курсы php

Решите уравнение [mathrm, dfrac x3=1]

В ответе укажите произведение наибольшего отрицательного и наименьшего положительного корней уравнения, деленное на (pi^2) .

Данное уравнение равносильно [dfrac x3=dfrac4+pi nquadLeftrightarrowquad x=dfrac<3pi>4+3pi n, qquad ninmathbb.]

Найдем отрицательные корни уравнения, решив неравенство: [dfrac<3pi>4+3pi n 0quadLeftrightarrowquad n>-dfrac14quadRightarrow] наибольший отрицательный корень получается при (n=0) и это (x=dfrac<3pi>4) .

Тогда произведение, деленное на (pi^2) , равно [-dfrac<9pi>4cdot dfrac<3pi>4divpi^2=-dfrac<27><16>=-1,6875.]

На этапе подготовки к ЕГЭ по математике старшеклассникам полезно повторить, как решать тригонометрические уравнения. Задания из данного раздела вызывают у учащихся определенные сложности, поэтому к ним необходимо отнестись с особым вниманием. Здесь вы можете ознакомиться с теорией, требующейся для выполнения упражнений, а также примерами с решениями тригонометрических уравнений. Обратите внимание, что подобные задания встречаются в аттестационных тестах довольно часто, поэтому пропускать повторение темы не стоит.

Подготовка к экзаменационному испытанию вместе со «Школково» — залог вашего успеха!

С помощью нашего образовательного портала занятия по математике будут проходить легко, и даже одни из самых сложных уравнений не вызовут особых затруднений. На сайте «Школково» представлены все необходимые для успешной сдачи ЕГЭ материалы.

Вся основная информация по теме использования функций (синуса, косинуса, тангенса и котангенса) располагается в разделе «Теоретическая справка», куда вы можете перейти с помощью кнопки «Ознакомиться с полной теорией». Наши преподаватели систематизировали и изложили все необходимые для успешной сдачи материалы в максимально простой и понятной форме. Вы быстро найдете необходимые правило и формулу, и решение тригонометрических уравнений будет даваться максимально легко.

А в разделе «Каталоги» вы сможете попрактиковаться в выполнении заданий. Здесь вы найдете множество уравнений различной сложности, в том числе профильного уровня.

Если какое-либо задание вызвало у вас затруднения, его можно добавить в «Избранное» и вернуться к нему позже для повторения или обсуждения решения с преподавателем.

База «Школково» постоянно обновляется, поэтому недостатка в задачах не будет.

Ссылка на основную публикацию
Adblock
detector