Krististudio.ru

Онлайн образование
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Метод электронного баланса онлайн

Сбалансирование окислительно-восстановительной реакции

Окислительно-восстановительные реакции, также редокс (англ. redox, от reduction-oxidation — восстановление-окисление) — это встречно-параллельные химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ (или ионов веществ), реализующихся путём перераспределения электронов между атомом-окислителем (акцептором) и атомом-восстановителем (донором).

Калькулятор сбалансирования окислительно-восстановительной реакции

Онлайн калькулятор для уравнивания(сбалансирования) несбалансированного окислительно-восстановительной химической реакции.

Описание окислительно-востановительной реакции

В процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется; окислитель присоединяет электроны, то есть восстанавливается. Причём любая окислительно-восстановительная реакция представляет собой единство двух противоположных превращений — окисления и восстановления, происходящих одновременно и без отрыва одного от другого

Пример окислительно-востановительной реакции

Методом электронного баланса подберите коэффициенты в схемах следующих окислительно-восстановительных реакций с участием металлов:

а) Ag + HNO3 → AgNO3 + NO + H2O
б) Ca +H2SO4 → CaSO4 + H2S + H2O
в) Be + HNO3 → Be(NO3)2 + NO + H2O

Применение метода электронного баланса по шагам. Пример «а»

(в сумме, опять же, получим ноль, как и должно быть)

Теперь перейдем ко второй части уравнения.

Для AgNO3 степень окисления серебра +1 кислорода -2, следовательно степень окисления азота равна:

Для NO степень окисления кислорода -2, следовательно азота +2

Для H2O степень окисления водорода +1, кислорода -2

Шаг 2 . Запишем уравнение в новом виде, с указанием степени окисления каждого из элементов, участвующих в химической реакции.

Ag 0 + H +1 N +5 O -2 3 → Ag +1 N +5 O -2 3 + N +2 O -2 + H +1 2O -2

  • В первоначальном уравнении перед Ag ставим тройку, что потребует такого же коэффициента перед AgNO3
  • Теперь у нас возник дисбаланс по количеству атомов азота. В правой части их четыре, в левой — один. Поэтому ставим перед HNO3 коэффициент 4
  • Теперь остается уравнять 4 атома водорода слева и два — справа. Решаем это путем применения коэффииента 2 перед H2O

Пример «б»

Для H2SO4 степень окисления водорода +1 кислорода -2 откуда степень окисления серы 0 — (+1)*2 — (-2)*4 = +6

Для CaSO4 степень окисления кальция равна +2 кислорода -2 откуда степень окисления серы 0 — (+2) — (-2)*4 = +6

Для H2S степень окисления водорода +1, соответственно серы -2

Ca 0 +H +1 2S +6 O -2 4 → Ca +2 S +6 O -2 4 + H +1 2S -2 + H +1 2O -2
Ca 0 — 2e = Ca +2 (коэффициент 4)
S +6 + 8e = S -2

Пример «в»

Для Be(NO3)2 степень окисления бериллия +2, кислорода -2, откуда степень окисления азота ( 0 — (+2) — (-2)*3*2 ) / 2 = +5

Be 0 + H +1 N +5 O -2 3 → Be +2 (N +5 O -2 3)2 + N +2 O -2 + H +1 2O -2
Be 0 — 2e = Be +2 (коэффициент 3)
N +5 +3e = N +2 (коэффициент 2)

Калькулятор сбалансирования окислительно-восстановительной реакции

Окислительно-восстановительные реакции — это процесс «перетекания» электронов от одних атомов к другим. В результате происходит окисление или восстановление химических элементов, входящих в состав реагентов.

Основные понятия

Ключевой термин при рассмотрении окислительно-восстановительных реакций — это степень окисления, которая представляет собой условный заряд атома и количество перераспределяемых электронов. Окисление — процесс потери электронов, при котором увеличивается заряд атома. Восстановление, наоборот, представляет собой процесс присоединения электронов, при котором степень окисления уменьшается. Соответственно, окислитель принимает новые электроны, а восстановитель — теряет их, при этом такие реакции всегда происходят одновременно.

Определение степени окисления

Вычисление данного параметра — одна из самых популярных задач в школьном курсе химии. Поиск зарядов атомов может быть как элементарным вопросом, так и задачей, требующей скрупулезных расчетов: все зависит от сложности химической реакции и количества составляющих соединений. Хотелось бы, чтобы степени окисления указывались в периодической таблице и были всегда под рукой, однако этот параметр приходится либо запоминать, либо вычислять для конкретной реакции. Итак, существует два однозначных свойства:

  • Сумма зарядов сложного соединения всегда равна нулю. Это значит, что часть атомов будет иметь положительную степень, а часть — отрицательную.
  • Степень окисления элементарных соединений всегда равна нулю. Простыми называются соединения, которые состоят из атомов одного элемента, то есть железо Fe2, кислород O2 или октасера S8.
Читать еще:  Занятия по математике онлайн 3 класс

Существуют химические элементы, электрический заряд которых однозначен в любых соединениях. К таким относятся:

Несмотря на однозначность, существуют некоторые исключения. Фтор F —уникальный элемент, степень окисления которого всегда составляет -1. Благодаря этому свойству многие элементы изменяют свой заряд в паре с фтором. Например, кислород в соединении с фтором имеет заряд +1 (O2F2) или +2 (ОF2). Кроме того, кислород меняет свою степень в перекисных соединениях (в перекиси водорода H202 заряд равен -1). И, естественно, кислород имеет нулевую степень в своем простом соединении O2.

При рассмотрении окислительно-восстановительных реакций важно учитывать вещества, которые состоят из ионов. Атомы ионных химических элементов имеют степень окисления, равную заряду иона. Например, в соединении гидрида натрия NaH по идее водород имеет степень +1, однако ион натрия также имеет заряд +1. Так как соединение должно быть электрически нейтральным, то атом водорода принимает заряд -1. Отдельно в этой ситуации стоят ионы металлов, так как атомы таких элементов ионизируются на разные величины. К примеру, железо F ионизируется и на +2, и на +3 в зависимости от состава химического вещества.

Пример определения степеней окисления

Для простых соединений, которые включают в себя атомы с однозначным зарядом, распределение степеней окисления не составляет труда. Например, для воды H2O атом кислорода имеет заряд -2, а атом водорода +1, что в сумме дает нейтральный нуль. В более сложных соединениях встречаются атомы, которые могут иметь разный заряд и для определения степеней окисления приходится использовать метод исключения. Рассмотрим пример.

Сульфат натрия Na2SO4 имеет в своем составе атом серы, заряд которого может принимать значения -2, +4 или +6. Какое значение выбрать? Первым делом определяем, что ион натрия имеет заряд +1. Кислород в подавляющем большинстве случаев имеет заряд –2. Составляем простое уравнение:

+1 × 2 + S + (–2) × 4 = 0

Таким образом, заряд серы в сульфате натрия равен +6.

Расстановка коэффициентов по схеме реакции

Теперь, когда вы знаете, как определять заряды атомов, вы можете расставлять коэффициенты в окислительно-восстановительных реакциях для их балансировки. Стандартное задание по химии: подобрать коэффициенты реакции при помощи метода электронного баланса. В этих заданиях вам нет нужды определять, какие вещества образуются на выходе реакции, так как результат уже известен. Например, определите пропорции в простой реакции:

Итак, определим заряд атомов. Так как натрий и кислород в левой части уравнения — простые вещества, то их заряд равен нулю. В оксиде натрия Na2O кислород имеет заряд -2, а натрий +1. Мы видим, что в левой части уравнения натрий имеет нулевой заряд, а в правой – положительный +1. То же самое с кислородом, который изменил степень окисления с нуля до -2. Запишем это «химическим» языком, указав в скобках заряды элементов:

Для балансировки реакции требуется уравновесить кислород и добавить коэффициент 2 к оксиду натрия. Получим реакцию:

Теперь у нас дисбаланс по натрию, уравновесим его при помощи коэффициента 4:

Теперь количество атомов элементов совпадают с обеих сторон уравнения, следовательно, реакция сбалансирована. Все это мы проделали вручную, и это было несложно, так как реакция сама по себе элементарна. Но что делать, если требуется сбалансировать реакцию вида K2Cr2O7 + KI + H2SO4 → Cr2(SO4)3 + I2 + H2O + K2SO4? Ответ прост: используйте калькулятор.

Читать еще:  Курсы по маникюру для начинающих онлайн

Калькулятор балансирования окислительно-восстановительных реакций

Наша программа позволяет автоматически расставить коэффициенты для самых распространенных химических реакций. Для этого вам необходимо вписать в поле программы реакцию или выбрать ее из раскрывающегося списка. Для решения выше представленной окислительно-восстановительной реакции вам достаточно выбрать ее из списка и нажать на кнопку «Рассчитать». Калькулятор мгновенно выдаст результат:

Использование калькулятора поможет вам быстро сбалансировать наиболее сложные химические реакции.

Заключение

Умение балансировать реакции необходимо всем школьникам и студентам, которые мечтают связать свою жизнь с химией. В целом расчеты выполняются по строго определенным правилам, для понимания которых достаточно элементарных знаний по химии и алгебре: помнить, что сумма степеней окисления атомов соединения всегда равна нулю и уметь решать линейные уравнения.

Метод электронного баланса онлайн

Используя метод электронного баланса, расставьте коэффициенты в уравнении реакции, схема которой:

Определите окислитель и восстановитель.

1) Составлен электронный баланс:

2) Расставлены коэффициенты в уравнении реакции:

3) Указано, что сера в степени окисления +6 является окислителем, а иод в степени окисления −1 — восстановителем.

Но кислород — тоже меняет свой заряд, можно его вместо йода выписать? Это ошибка?

Кислород остается в степени окисления -2

Почему там — 2 электрона?

потому что два йода.

Используя метод электронного баланса, составьте уравнение реакции по схеме:

Определите окислитель и восстановитель

1) Составим электронный баланс:

2) Определены коэффициенты, и составлено уравнение реакции:

3) Указаны окислитель и восстановитель:

окислитель — восстановитель —

перепроверьте пожалуйста воccтановитель Cu! там должно быть -1 электрон, а не -2!

Кирилл, всё правильно, потому что оксид меди 1.

формула оксида меди CuO,а не Cu2O

Мария, оксид меди 1 тоже есть, и он в этом задании 😉

Не нравится, что электронный баланс у меди составлен 2Cu(+1) -2e -> 2Cu(+2)

По-моему, так мы делаем только с веществами, молекула которых состоит из нескольких атомов одного элемента-неметалла.

У меня получилось:

В формуле оксида меди (I) тоже «несколько атомов одного элемента».

И все таки в данной реакции медь имея степень окисления +1 отдает 1 электрон и становится +2, она не может отдать 2 электорона. Проверьте

И всё-таки две частицы меди (+1) отдают два электрона и становятся двумя частицами меди (+2)

Используя метод электронного баланса, составьте уравнение реакции по схеме:

Определите окислитель и восстановитель

1) Составлен электронный баланс:

2) Определены коэффициенты, и составлено уравнение реакции:

3) Указаны окислитель и восстановитель:

окислитель — восстановитель —

Здравствуйте в реакции нету NO3 . есть HNO3 который и является окислителем .

Гарик, спасибо. Поправка внесена.

В Fe(NO3)3 степень окисления у кислорода -2.

-2*3=-6, степень окисления Fe +3, следовательно степень окисления азота +3, а не +2

имеется в виду оксид азота

Почему в левой части железо 2-х валентное , а в правой части 3-х валентное

потому что это окислительно-восстановительная реакция

Используя метод электронного баланса, составьте уравнение реакции по схеме:

Определите окислитель и восстановитель

1) Составим электронный баланс:

2) Определим коэффициенты, и составим уравнение реакции:

3) Укажем окислитель и восстановитель:

окислитель — восстановитель —

Используя метод электронного баланса, составьте уравнение реакции по схеме:

Определите окислитель и восстановитель

1) Составим электронный баланс:

2) Определим коэффициенты, и составим уравнение реакции:

3) Укажем окислитель и восстановитель:

окислитель — восстановитель —

Здравствуйте , хотелось бы узнать, возможен ли такой вариант решения :

Руслан, у вас не уравнен кислород.

Калия в правой части больше, чем в левой

Артём, всё правильно. Проверьте ещё раз.

Может, я чего-то не понимаю, но в гидридах у Н степень окисления —1. Почему тогда азот в степени —3, когда должен быть в совершенно противоположной?

Читать еще:  Двойная экспозиция онлайн редактор

Только в гидридах металлов, потому что металлы ни при каких обстоятельствах не принимают отрицательную степень окисления.

Ошибка в комплексной соли. Не может быть тетрагидрооксоалюмината калия. Если у амфотерного металла степень окисления +3, то он может быть либо пента, либо гидро. А амфотерный метал со степенью окисления +2 может быть и тетра, и пента, и гидро.

Алюминий образует тетра- и гексагидроалюминаты.

Составление уравнений окислительно-восстановительных реакций

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Данный урок раскрывает возможность использования метода электронного баланса для составления уравнений окислительно-восстановительных реакций. Рассмотрены примеры расстановки коэффициентов в уравнениях некоторых окислительно-восстановительных реакций с участием сложных веществ.

Тема: Окислительно-восстановительные реакции

Урок: Составление уравнений окислительно-восстановительных реакций

1. Сущность электронного баланса

При составлении уравнений окислительно-восстановительных реакций следует учесть, что число электронов, отданных восстановителем, должно быть равно числу электронов, принятых окислителем. Должен соблюдаться электронный баланс.

2. Пример использования метода электронного баланса

В качестве примера рассмотрим реакцию соляной кислоты с перманганатом калия.

Запишем схему данной реакции, зная, что продуктами реакции являются хлорид калия, хлорид марганца, хлор и вода:

Расставить коэффициенты в схеме такой реакции методом подбора достаточно сложно. В таком случае используют метод электронного баланса.

Дальше необходимо расставить значения степеней окисления химических элементов и определить, у каких элементов степень окисления изменилась:

+1 -1 +1+7 -2 +1 -1 +2 -1 0 +1 -2

Степени окисления поменяли марганец и хлор.

Записываем схемы процессов окисления и восстановления:

(Как правило, простое вещество в полуреакциях окисления или восстановления записывают в молекулярном виде – в данном случае Cl2. Тогда в левой части полуреакции должно быть два атома хлора. Один атом хлора теряет один электрон, а два атома – два электрона.)

Чтобы уравнять число отданных и принятых электронов, домножим первую полуреакцию на 2, а вторую – на 5.

Mn +5e = Mn 2 окислитель, восстанавливается

2Cl – 2e = Cl2 5 восстановитель, окисляется

Полученные коэффициенты ставим перед соответствующими формулами в правой части уравнения:

Теперь находим коэффициенты для формул всех остальных веществ:

Получили уравнение реакции.

Список рекомендованной литературы

1. Микитюк А.Д. Сборник задач и упражнений по химии. 8-11 классы / А.Д. Микитюк. – М.: Изд. «Экзамен», 2009. (с.68-71)

2. Оржековский П.А. Химия: 9-й класс: учеб. для общеобраз. учрежд. / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. – М.: АСТ: Астрель, 2007. (§22)

3. Рудзитис Г.Е. Химия: неорган. химия. Орган. химия: учеб. для 9 кл. / Г.Е. Рудзитис, Ф.Г. Фельдман. – М.: Просвещение, ОАО «Московские учебники», 2009. (§5)

4. Химия. 8-11 классы: тренинги и тесты с ответами по теме «Окислительно-восстановительные реакции» / авт.-сост. Т.М. Солдатова. – Волгоград: Учитель, 2007. (с.12-20)

5. Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. – М.: РИА «Новая волна»: Издатель Умеренков, 2008. (с.55)

6. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. – М.: Аванта+, 2003. (с.70-77)

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов (видеоопыты по теме) (Источник).

2. Единая коллекция цифровых образовательных ресурсов (интерактивные задачи по теме) (Источник).

3. Электронная версия журнала «Химия и жизнь» (Источник).

Домашнее задание

1. №10.46 из «Сборника задач и упражнений по химии для средней школы» И.Г. Хомченко, 2-е изд., 2008 г.

2. №№7.17, 7.26 из сборника задач и упражнений по химии (8-11 классы), автор — А.Д. Микитюк. – М.: Изд. «Экзамен», 2009.

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Ссылка на основную публикацию
Adblock
detector