Krististudio.ru

Онлайн образование
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Исследование на четность и нечетность функции онлайн

Построение графика функции методом дифференциального исчисления

Правила ввода функции

  1. Примеры
    ≡ x^2/(x+2)
    cos 2 (2x+π) ≡ (cos(2*x+pi))^2
    ≡ x+(x-1)^(2/3)

Пример №1 . Провести полное исследование функции и построить ее график.

1) Функция определена всюду, кроме точек .

2) Функция нечетная, так как f(-x) = -f(x) , и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.

3) Функция не периодическая.

4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.

5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая – вертикальная асимптота.

6) Находим и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).

В окрестности точки x3=3 имеет: y’>0 при x 3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2. Найти первую производную функции

7) Находим . Видим, что y’’=0 только при x=0, при этом y” 0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y” Найти вторую производную функции

8) Выясним вопрос об асимптотах.

Наличие вертикальной асимптоты установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.

Найдем наклонные асимптоты: , , следовательно, y=-x – наклонная двусторонняя асимптота.

9) Теперь, используя полученные данные, строим чертеж:
Построить график функции

Пример №2 . Построить график функции .
Решение.
1. Область определения функции D(y) = (-∞;0)U(0;∞).
2. Функция не является четной или нечетной.
3. Найдем точки пересечения графика с осью ОХ; имеем
; .
4. Точки разрыва x=0 , причем ; следовательно, x=0 является вертикальной асимптотой графика.
Найдем наклонные асимптоты:
;
.
Наклонная асимптота имеет уравнение y=x .
5. Найдем экстремум функции и интервалы возрастания и убывания. Имеем . Существует единственная критическая точка x =2. В промежутках x∈(-∞ ;0)∪(2; +∞) y’>0, следовательно, функция возрастает; в промежутке x∈(0;2) y’ 0, следовательно, x=2 – точка минимума ymin=3.
6. Найдем интервалы выпуклости и вогнутости кривой и точки ее перегиба. Так как y’’>0 (x≠0), то график функции всюду вогнут. Точек перегиба кривая не имеет.
Строим график функции.

исследование на четность функции онлайн

Вы искали исследование на четность функции онлайн? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и исследование функции на четность и нечетность онлайн, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «исследование на четность функции онлайн».

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как исследование на четность функции онлайн,исследование функции на четность и нечетность онлайн,исследование функции на четность и нечетность онлайн с решением,исследование функции на четность онлайн,исследовать на четность и нечетность функции онлайн,исследовать на четность функцию,исследовать на четность функцию онлайн,исследовать функции на четность и нечетность онлайн,исследовать функцию на четность,исследовать функцию на четность и нечетность,исследовать функцию на четность и нечетность онлайн,исследовать функцию на четность онлайн,как проверить четность функции,калькулятор четности и нечетности функции,калькулятор четности нечетности функции,онлайн исследование функции на четность,онлайн исследовать функцию на четность,онлайн калькулятор четность и нечетность функции,онлайн калькулятор четность функции,онлайн определение четности и нечетности функции,онлайн определение четности функции,онлайн проверка функции на четность,онлайн проверка функции на четность и нечетность,онлайн четность нечетность,определение четности и нечетности функции онлайн,определение четности функции онлайн,определить функция четная или нечетная онлайн,определить четная или нечетная функция онлайн,определить четность и нечетность функции онлайн,определить четность или нечетность функции онлайн,определить четность функции онлайн,проверить на четность и нечетность онлайн,проверить на четность функцию,проверить функцию на четность,проверить функцию на четность и нечетность онлайн,проверить четность функции онлайн,проверка на четность и нечетность функции онлайн,проверка на четность функции,проверка на четность функции онлайн,проверка функции на четность и нечетность онлайн,проверка функции на четность онлайн,функция четная и нечетная онлайн,функция четная или нечетная онлайн,функция четная нечетная онлайн,четная и нечетная функция онлайн,четная или нечетная функция онлайн,четная нечетная функция онлайн,четность и нечетность функции онлайн,четность и нечетность функции онлайн калькулятор,четность и нечетность функции онлайн решение,четность нечетность онлайн,четность нечетность функции онлайн,четность функции как проверить,четность функции онлайн,четность функции онлайн калькулятор. На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и исследование на четность функции онлайн. Просто введите задачу в окошко и нажмите «решить» здесь (например, исследование функции на четность и нечетность онлайн с решением).

Где можно решить любую задачу по математике, а так же исследование на четность функции онлайн Онлайн?

Решить задачу исследование на четность функции онлайн вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.

Наш искусственный интеллект решает сложные математические задания за секунды.

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

исследование на четность функции онлайн

Вы искали исследование на четность функции онлайн? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и исследование функции на четность и нечетность онлайн, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «исследование на четность функции онлайн».

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как исследование на четность функции онлайн,исследование функции на четность и нечетность онлайн,исследование функции на четность и нечетность онлайн с решением,исследование функции на четность онлайн,исследовать на четность и нечетность функции онлайн,исследовать на четность функцию,исследовать на четность функцию онлайн,исследовать функции на четность и нечетность онлайн,исследовать функцию на четность,исследовать функцию на четность и нечетность,исследовать функцию на четность и нечетность онлайн,исследовать функцию на четность онлайн,как проверить четность функции,калькулятор четности и нечетности функции,калькулятор четности нечетности функции,онлайн исследование функции на четность,онлайн исследовать функцию на четность,онлайн калькулятор четность и нечетность функции,онлайн калькулятор четность функции,онлайн определение четности и нечетности функции,онлайн определение четности функции,онлайн проверка функции на четность,онлайн проверка функции на четность и нечетность,онлайн четность нечетность,определение четности и нечетности функции онлайн,определение четности функции онлайн,определить функция четная или нечетная онлайн,определить четная или нечетная функция онлайн,определить четность и нечетность функции онлайн,определить четность или нечетность функции онлайн,определить четность функции онлайн,проверить на четность и нечетность онлайн,проверить на четность функцию,проверить функцию на четность,проверить функцию на четность и нечетность онлайн,проверить четность функции онлайн,проверка на четность и нечетность функции онлайн,проверка на четность функции,проверка на четность функции онлайн,проверка функции на четность и нечетность онлайн,проверка функции на четность онлайн,функция четная и нечетная онлайн,функция четная или нечетная онлайн,функция четная нечетная онлайн,четная и нечетная функция онлайн,четная или нечетная функция онлайн,четная нечетная функция онлайн,четность и нечетность функции онлайн,четность и нечетность функции онлайн калькулятор,четность и нечетность функции онлайн решение,четность нечетность онлайн,четность нечетность функции онлайн,четность функции как проверить,четность функции онлайн,четность функции онлайн калькулятор. На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и исследование на четность функции онлайн. Просто введите задачу в окошко и нажмите «решить» здесь (например, исследование функции на четность и нечетность онлайн с решением).

Где можно решить любую задачу по математике, а так же исследование на четность функции онлайн Онлайн?

Решить задачу исследование на четность функции онлайн вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.

Наш искусственный интеллект решает сложные математические задания за секунды.

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

Четные и нечетные функции

Презентация к уроку

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

  • сформировать понятие чётности и нечётности функции, учить умению определять и использовать эти свойства при исследовании функций, построении графиков;
  • развивать творческую активность учащихся, логическое мышление, умение сравнивать, обобщать;
  • воспитывать трудолюбие, математическую культуру; развивать коммуникативные качества.

Оборудование: мультимедийная установка, интерактивная доска, раздаточный материал.

Формы работы: фронтальная и групповая с элементами поисково-исследовательской деятельности.

Информационные источники:

1.Алгебра9класс А.Г Мордкович. Учебник.
2.Алгебра 9класс А.Г Мордкович. Задачник.
3.Алгебра 9 класс. Задания для обучения и развития учащихся. Беленкова Е.Ю. Лебединцева Е.А

1. Организационный момент

Постановка целей и задач урока.

2. Проверка домашнего задания

№10.17 (Задачник 9кл. А.Г. Мордкович).

а) у = f(х), f(х) =

3. Актуализация знаний

– Даны функции.
– Указать область определения для каждой функции.
– Сравнить значение каждой функции для каждой пары значения аргумента: 1 и – 1; 2 и – 2.
– Для каких из данных функций в области определения выполняются равенства f(– х) = f(х), f(– х) = – f(х)? (полученные данные занести в таблицу) Слайд

и 0

и не опред.

4. Новый материал

– Выполняя данную работу, ребята мы выявили ещё одно свойство функции, незнакомое вам, но не менее важное, чем остальные – это чётность и нечетность функции. Запишите тему урока: «Чётные и нечётные функции», наша задача – научиться определять чётность и нечётность функции, выяснить значимость этого свойства в исследовании функций и построении графиков.
Итак, найдём определения в учебнике и прочитаем (стр. 110). Слайд

Опр. 1 Функция у = f (х), заданная на множестве Х называется чётной, если для любого значения х Є Х выполняется равенство f(–х)= f(х). Приведите примеры.

Опр. 2 Функция у = f (х), заданная на множестве Х называется нечётной, если для любого значения х Є Х выполняется равенство f(–х)= –f(х). Приведите примеры.

Где мы встречались с терминами «четные» и «нечётные»?
Какие из данных функций будут чётными, как вы думаете? Почему? Какие нечётными? Почему?
Для любой функции вида у = х n , где n – целое число можно утверждать, что функция нечётна при n – нечётном и функция чётна при n – чётном.
– Функции вида у = и у = 2х – 3 не являются ни чётным , ни нечётными, т.к. не выполняются равенства f(– х) = – f(х), f(– х) = f(х)

Изучение вопроса о том, является ли функция чётной или нечётной называют исследованием функции на чётность. Слайд

В определениях 1 и 2 шла речь о значениях функции при х и – х, тем самым предполагается, что функция определена и при значении х, и при – х.

Опр 3. Если числовое множество вместе с каждым своим элементом х содержит и противоположный элемент –х, то множество Х называют симметричным множеством.

(–2;2), [–5;5]; (∞;∞) – симметричные множества, а [0; ∞), (2;–2], [–5;4] – несимметричные.

– У чётных функций область определения – симметричное множество? У нечётных?
– Если же D(f) – несимметричное множество, то функция какая?
– Таким образом, если функция у = f(х) – чётная или нечётная, то её область определения D(f) – симметричное множество. А верно ли обратное утверждение, если область определения функции симметричное множество, то она чётна, либо нечётна?
– Значит наличие симметричного множества области определения – это необходимое условие, но недостаточное.
– Так как же исследовать функцию на четность? Давайте попробуем составить алгоритм.

Слайд

Алгоритм исследования функции на чётность

1. Установить, симметрична ли область определения функции. Если нет, то функция не является ни чётной, ни нечётной. Если да, то перейти к шагу 2 алгоритма.

2. Составить выражение для f(– х).

Примеры:

Исследовать на чётность функцию а) у = х 5 +; б) у = ; в) у= .

а) h(х) = х 5 +,

1) D(h) = (–∞; 0) U (0; +∞), симметричное множество.

2) h (– х) = (–х) 5 + – х5 –= – (х 5 +),

3) h(– х) = – h (х) => функция h(х) = х 5 + нечётная.

б) у = ,

у = f(х), D(f) = (–∞; –9)? (–9; +∞), несимметричное множество, значит функция ни чётная, ни нечётная.

в) f(х) = , у = f (х),

1) D(f) = (–∞; 3] ≠ [3; +∞), симметричное множество.

2)f (– х) == ;

3) f (– х) = f (х) => функция f(х) = чётная.

Итак, по аналитической записи можно определить четность функции? Но кроме аналитического способа задания функции есть другие. Какие? Можно ли по графику функции выявить её четность? Давайте вернёмся к заданию, которое мы выполняли в начале урока, найдём соответствие между аналитически заданными функциями и их графиками (изображёнными на доске), что вы находите примечательного в расположении графиков чётных функций? Нечётных?

Вывод:

  1. График чётной функции симметричен относительно оси у.
  2. График нечётной функции симметричен относительно начала координат.

– Верны ли обратные утверждения?

  1. Если график функции у = f(х) симметричен относительно оси ординат, то у = f(х) – чётная функция.
  2. Если график функции у = f(х) симметричен относительно начала координат, то у = f(х) – нечётная функция.

Доказательство данных утверждений разобрать дома самостоятельно по учебнику и записать в тетрадь.

– Какова же значимость свойства четности или нечётности функции? Зачем нужно изучать
свойство чётности функций .В план свойств функций свойство чётности вы поставили бы на какое порядковое место

5. Первичное закрепление

Самостоятельная работа

1. Является ли симметричным заданное множество: а) [–7;7]; б) (∞; –2), (–4; 4]?

1. Является ли симметричным заданное множество: а) [–2;2]; б) (∞; 0], (0; 7) ?

а) у = х 2 · (2х – х 3 ), б) у =

Взаимопроверка по слайду.

6. Задание на дом: №11.11, 11.21,11.22;

Доказательство геометрического смысла свойства чётности.

***(Задание варианта ЕГЭ ).

1. Нечётная функция у = f(х) определена на всей числовой прямой. Для всякого неотрицательного значения переменной х значение этой функции совпадает со значением функции g(х) = х(х + 1)(х + 3)(х – 7). Найдите значение функции h(х) = при х = 3.

Четность и нечетность функции — алгоритм исследования, условие и примеры

Общие сведения

Исследование функции на четность и нечетность — базовый элемент, показывающий ее поведение, которое зависит от значения аргумента. Последний является независимой переменной, соответствующей определенным допустимым значениям. Множество чисел, которое может принимать неизвестная независимого типа, называется областью определения. Областью значений функции вида y = f (x) являются все значения зависимой переменной «y».

Теперь следует сформулировать список базовых знаний, которые необходимы для анализа выражений на четность. Если нужно выполнить другие процедуры исследования, то его следует расширить. Например, для нахождения максимума следует ознакомиться с производной. Необходимый минимум знаний о функциях следующий:

  1. Область определения — D (f).
  2. Виды.
  3. Правила.
  4. Свойства для четных и нечетных.
  5. Классификация.

Первый элемент необходим для выявления аргумента, при котором можно узнать его недопустимые значения, а также определить симметричность. От свойств и вида также зависит четность. Первое рекомендуется применять в частных случаях, например, произведение двух нечетных тождеств. Результат следует проверять при помощи соответствующего программного обеспечения. Например, онлайн-калькулятор четности и нечетности функций позволяет следить за правильностью решения.

Область определения

Первый элемент, который нужен для анализа, следует рассмотреть подробнее. Область определения функции z = g (y) специалисты рекомендуют обозначать литерой «D». Полная запись выглядит таким образом: D (z). Кроме того, следует выяснить симметричность множества. Под последним понимается некоторый интервал, который нужно найти.

D (z) записывается в виде множества. Например, D (z) = [1;8]. Запись значит ограниченность аргумента, принимающего значения от 1 включительно до 8 включительно, то есть следующие цифры: 1, 2, 3, 4, 5, 6, 7 и 8. Если указана запись в виде (1;4), то ее нужно трактовать таким образом: от 1 не включительно до 4 не включительно, то есть в интервал входят только числа 2 и 3.

Для определения величины D (z) необходимо решить неравенство, корнем которого являются все значения аргумента. Для этих целей можно использовать и специализированное программное обеспечение. Математики рекомендуют свести пользование решебниками и программами к минимуму, поскольку не всегда предоставится возможность воспользоваться ими на экзаменах или контрольных.

Основные виды

Исследование функции зависит от ее вида, который нужно правильно определять. Для начала следует обозначить сложность, поскольку от этого параметра зависят дальнейшие действия и свойства, которыми придется руководствоваться. Математики производят разделение таким образом:

  • Простые: алгебраические, трансцендентные и тригонометрические.
  • Составные или сложные.

Алгебраические делятся на рациональные (без корня) и иррациональные (наличие радикала). Первые состоят из целых и дробных. D (z) для этих типов — все множество действительных чисел. Если функция представлена в виде обыкновенной дроби, то значение аргумента, приводящее к пустому множеству (знаменатель равен нулю), нужно исключить. Когда аргумент находится под знаком радикала (корня), тогда она считается иррациональной. Однако следует проверить, чтобы под корнем четной степени не было отрицательного значения, которое приводит к неопределенности.

Все функции, содержащие sin, cos, tg и ctg, являются тригонометрическими. Кроме того, arcsin, arccos, arctg и arcctg — обратные тригонометрические. Трансцендентные можно разделить на такие три группы: показательные, степенные и логарифмические.

Второе отличается от первого формулой. Другой тип классификации основан на периодичности. В зависимость от этого параметра все функции делятся на периодические и непериодические. Параметр периодичности означает повторение ее поведения через определенный период Т.

Существует еще один критерий. Он называется монотонностью. В зависимости от него, функции бывают монотонными и немонотонными. Первая группа характеризуется постоянностью, то есть она либо убывает, либо возрастает. Все остальные могут убывать и возрастать на определенных промежутках. Примером является y = cos (x), поскольку она является убывающей и возрастающей через определенный период.

Правила для выявления

Для того чтобы исследовать на четность, существует два правила или теоремы, которые записываются в виде двух формул. Четная — функция вида w (x), для которой справедливо такое равенство: w (-x) = w (x). Для нечетной соотношение немного другое: w (-x) = w (x). Однако бывают выражения, к которым не применимы эти тождества. Они принадлежат общему виду.

Для оптимизации решения специалисты рекомендуют использовать некоторую последовательность действий или специальный алгоритм. Он позволяет определить четность за минимальный промежуток времени и без ошибок. Необходимо обратить внимание на пункты или шаги, по которым выполняется подробная оценка:

  • Разложить при необходимости на простые элементы.
  • Определить D (z). Если ее график симметричный, то нужно переходить к следующему шагу. В противном случае результатом является функция общего вида.
  • Проверить, подставив в выражение отрицательное значение аргумента w (-x).
  • Выполнить сравнение: w (-x) = w (x).
  • Сделать соответствующий вывод.

Если w (-x) = w (x), то это свидетельствует о четности. При выполнении тождества w (-x) = -w (x) функция является нечетной. Важно обратить внимание на D, поскольку в некоторых точках равенства и условия могут не выполняться. Это свидетельствует о том, что искомая функция принадлежит к общему виду, то есть не является четной и нечетной.

Одним интересным способом является графический метод (принцип). Для его реализации нужно выполнить построение графика. Если он будет симметричным относительно оси ординат ОУ, то равенство w (-x) = w (x) будет выполняться. В случае симметричности относительно начала системы координат (точка пересечения осей абсцисс и ординат), будет справедливым равенство w (-x) = -w (x).

Следствия из утверждений

Свойства или следствия из утверждений расчетов позволяют оптимизировать процесс решения, поскольку нет необходимости выполнять какие-либо действия. Очень часто приходится тратить много времени на задание, которое можно решить за несколько минут. Математики выделяют следующие свойства для таких функций:

  • Симметричность графика: четная — относительно ОУ, а нечетная — относительно начала координат.
  • Функция эквивалентна сумме четной и нечетной.
  • Результат комбинации четных эквивалентен четной, а нечетных — нечетной.
  • Результирующее произведение: 2 четных — четное, 2 нечетных — четная, а 2 разной четности — нечетной.
  • Композиция: 2 нечетных — нечетна, четная и нечетная — четна, любая с четной — четна (не наоборот).
  • При взятии производной от четной результирующая является нечетной, а от нечетной — четной.
  • Определенный интеграл вида ∫(g (x))dx с границами от -А до А равен двойным интегралам ∫(g (x))dx с границей от -А до 0 и от 0 до А: ∫(g (x))dx |(-A;A) = 2∫(g (x))dx |(-A;0) = 2∫(g (x))dx |(0;A).
  • Определенный интеграл нечетной функции с границами -А и А равен 0.
  • Ряд Маклорена: четные степени соответствуют четной и наоборот.
  • Ряд Фурье: четная содержит только выражения с cos, а нечетная — sin.

Второе свойство можно записать математически таким образом: z (x) = y (x) + w (x). Выражение y (x) можно выразить следующим образом: y (x) = [z (x) — z (-x)] /2. Тождество w (x) выражается через z (x) формулой: w (x) = [z (x) + z (-x)] /2.

Классификация по четности

Специалисты давно уже исследовали некоторые функции. Примеры четных и нечетных можно классифицировать по признаку четности. Эти данные значительно ускоряют процесс анализа любого выражения. К нечетным функциям относятся следующие (следует учитывать, что аргумент «x» принадлежит множеству действительных чисел Z):

  • Возведение в степень, показатель которой является целым и нечетным.
  • Сигнум (sgn) — кусочно-постоянный тип, который задан несколькими формулами, объединенными в систему.
  • Радикал положительной нечетной степени.
  • Тригонометрические: sin (x), tg (x), ctg (x) и cosec (x).
  • Обратные тригонометрические: arcsin (x), arcctg (x), arcsec (x) и arccosec (x).
  • Гиперболические и их обратные выражения: гиперболические синус и косинус, а также ареасинус, ареатангенс и ареакотангенс.
  • Гудермана и обратная ей: gd (x) = arctg (sh (x)) и arcgd (x) = arch (sec (x)).
  • Интегральный синус: Si (x).
  • Матье: se (x).

Кроме того, существуют еще составные выражения, элементами которых являются простые функции. Для анализа необходимо руководствоваться свойствами. Следующий класс, который объединяет все четные выражения, состоит из следующего перечня:

  • Возведение в четную и целую степень.
  • Модуль аргумента.
  • Константа.
  • Тригонометрические: cos (x) и sec (x).
  • Гиперболические: косинус и секанс.
  • Дельта-функция Дирака: z (x) = δ(x).
  • Гаусса: z (x) = a * exp[(-(x — b)^2) / 2c 2 ].
  • Кардинальный синус: sinc (x).

Остальные составляют класс общего вида, который не принадлежит к четным и нечетным. При решении задач необходимо иметь таблицу всех функций, которая должна быть составлена перед обучением. Следует учитывать, что на экзаменах и контрольных функции, используемые для описания каких-либо процессов, практически не исследуются. Зная алгоритм, не составит особого труда проверить выражение на четность. Следующим этапом, который поможет закрепить теоретические знания, считается практика.

Пример решения

Задачи исследования функции на четность встречаются редко, поскольку этот элемент входит в полный анализ ее поведения. Пусть дано тождество z (y) = (y 2 — y — 2) / (y 2 — 1). В этом случае следует действовать по алгоритму:

  • Состоит из двух элементов: g (y) = y 2 — y — 2 и h (y) = y 2 — 1.
  • Область значений: D (y 2 — y — 2) = (-бесконечность; +бесконечность) и D (y 2 — 1) = (-бесконечность; -1) U (-1;1) U (1; +бесконечность).
  • График функции является симметричным, поскольку задан параболой.
  • Выполнить анализ по формулам: g (-y) = (-y)^2 + y — 2 = y 2 + y — 2 и h (-y) = (-y)^2 — 1 = y 2 — 1.
  • В двух случаях функции являются нечетными: в первом — изменение знака, а во втором — от четной отнимается 1. Следовательно, искомое выражение является нечетной функцией.

Задачу можно решить вторым способом — проанализировать составляющие элементы. Например, знаменатель всегда будет нечетным, поскольку от четного y 2 отнимается нечетное число (6 — 1 = 5). Этот способ используется в некоторых языках программирования, для написания подпрограмм и процедур, позволяющих проверить или отобрать все нечетные значения. Числитель также является нечетным, поскольку он содержит нечетный элемент «y». Если построить график, используя любой из веб-ресурсов, то он окажется симметричным относительно начала координат.

Первое свойство свидетельствует о том, что функция является нечетной. Некоторые новички делают распространенную ошибку, считая, что отношение нечетных есть величина четная. Однако такое утверждение не применимо в этом случае. Если бы было произведение двух нечетных выражений, то результат являлся бы четным. Об этой особенности свидетельствует свойство под номером 4.

Таким образом, для исследования функции на предмет ее четности или нечетности нужно воспользоваться специальным алгоритмом, который рекомендуют математики. Он позволит выполнить операцию без ошибок и за короткий промежуток времени.

Читать еще:  Физика с нуля онлайн бесплатно
Ссылка на основную публикацию
Adblock
detector